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Abstract. We discuss the behaviour of dynamic correlation functions under conformal 
transformations. In particular we obtain the exact form of the dynamic scaling function 
at the critical point for an arbitrary isotropic two-dimensional model, with either conserved 
or non-conserved order parameter. 

1. Introduction 

The principle of conformal invariance of isotropic systems at a critical point has been 
shown to have striking consequences, particularly in two dimensions (e.g. see Polyakov 
1970, Belavin et a1 1984, Dotsenko 1984, Cardy 1984, Cardy and Redner 1984). It 
rests on the idea that correlation functions at the critical point should transform simply 
not only under a uniform global length rescaling r’= b-lr, but also under more general 
conformal transformations, which correspond locally to a rotation plus a dilation by 
an r-dependent rescaling factor b ( r ) ,  In two dimensions any analytic function w =f(l) 
gives a conformal transformation. In general such a transformation will distort the 
boundary conditions. Sometimes this feature can be exploited to gain useful informa- 
tion. For example, the transformation w = In l maps the whole l plane into a strip, 
or cylinder, with periodic boundary conditions, which is a quasi-one-dimensional 
geometry. This then gives a relation between I D  systems and 2~ critical systems (Cardy 
1984), which will be further exploited in this paper. 

So far, conformal invariance has been applied only to static correlation functions. 
It is the purpose of this paper to extend the discussion to critical dynamics. According 
to the theory of dynamic scaling (see, e.g., Ma 1976) (which is supported by numerous 
renormalisation group calculations) the dynamic response function 6( w, k) at the 
critical point scales according to 

&w, k )  - Ak-’+’@( Bok- ’ )  (1.1) 

in the scaling limit k + 0, wk-’ fixed, where z is a universal dynamic exponent, @ is 
a universal scaling function, and A, B are non-universal constants. The main result 
of this paper is that, in two dimensions, conformal invariance completely determines 
the scaling function @. The argument proceeds in two stages. First, in 0 2, we discuss 
the properties of the dynamic correlation function under a general conformal transfor- 
mation. It turns out that the usual static transformation law is augmented by a rescaling 
of the microscopic rate r+ b ( r ) - T .  Under the logarithmic transformation, the 2~ 
critical dynamics is then mapped onto the dynamics of a strip with a non-uniform rate. 
The static correlation length of the system in the strip is of the same order of magnitude 
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as its width. Therefore, on much larger distance scales it is permissible to use mean 
field theory to calculate the dynamic correlation function in the strip. This is tractable 
even for a non-uniform rate. In this paper we solve for the dynamic correlation function 
for two simple types of dynamics: model A (corresponding to spin-flip dynamics 
(Glauber 1963)) and model B (corresponding to a converved order parameter or 
spin-exchange dynamics (Kawasaki 1970)). The relevant equations are formulated 
and solved in § 3. Finally, we discuss the physical interpretation of our results in § 4. 

2. Conformal invariance and dynamics 

The time-dependent correlation function in the disordered phase is 

C(lrl - r21, t l  - t 2 )  = (cp(r1, f M r 2 ,  t2)) (2.1) 

where cp(r, t )  is the instantaneous value of the order parameter. C ( r ,  t )  depends also 
on thermodynamic variables such as temperature and applied field. At a critical point, 
the theory of dynamic scaling (Halperin and Hohenberg 1969) asserts that for large 
r, C transforms according to 

C (  r, t )  = b-(d-2+v)C(  b-lr, b-'t) (2.2) 

under a uniform dilatation r +  b-lr. This covariance is simply interpreted in the 
language of the renormalisation group (Ma 1976). According to these ideas, such a 
dilatation is equivalent to a coarse-graining procedure in which the microscopic length 
scale a is increased by a uniform factor b. At a critical point, the form of the Hamiltonian 
(which governs the static properties) is invariant under this coarse graining. The 
coarse-grained local order parameter is simply related to the original one by a rescaling 
cp + b-"cp where 2x = d - 2 + 77. Thus the static correlation function satisfies 

(cp(rl)dr2)) = b-"b-"(dr: )cp(r ; ) )  (2.3) 

where ri = b-'ri,  which is equivalent to (2.2) when t ,  = t,. 
In order to incorporate the dynamics, one brings in the idea that the local micro- 

scopic rate r transforms under this coarse graining according to r+  b - T .  Since the 
correlation function depends on r and t only through the combination T t ,  this is 
equivalent to (2.2). 

The main assumption of the RG framework is that of locality: the fixed point 
Hamiltonian is short ranged, and the coarse-grained order parameter cp and microscopic 
rate r depend only locally on their RG ancestors. This allows the generalisation of the 
concept of scale invariance to that of conformal invariance. A conformal transformation 
r + r' is one which is locally equivalent to a dilatation by a factor b( r ) ,  plus a possible 
rotation. That is, there is no shear. Under such a transformation, the fixed point 
Hamiltonian will remain invariant, and locally cp and r will transform according to 

cp(r) + b(r)-"cp(r') r + b( r ) - ' r .  (2.4) 

The second equation implies that, under a general conformal transformation, the system 
will be transformed into one with a non-uniform rate q r ) .  It is necessary, then, to 
consider this possibility from the outset, and regard the correlation function 
C ( r l ,  r2;  I ' ( r ) t )  as a functional of T ( r ) .  The transformation law is then 

(2.5) C( rlr r, ; I?( r )  t )  = b( r,)-"b( r2)-"C( r : ,  r; ; b( r)- ' I ' (  r )  t ) .  
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It is also useful to record the corresponding result for the dynamic response function, 
whose Fourier transform @ r , ,  r,; d ( r ) - ' )  depends on r only through the indicated 
combination w r - ' ,  and is related to the Fourier transform of C by the fluctuation- 
dissipation theorem 

e ( r l ,  r,, 0) = (2/w) Im @r1, r,, 0). (2.6) 

The static limit ( w  + 0) of 6 gives the equilibrium correlation function C(rl, r,; t ,  = t 2 ) .  
Under a conformal transformation 6 behaves according to 

(2.7) G(rl, r,; r ( r ) - ' w )  = b(r l ) -Xb(r2) -XG(r i ,  r i ;  b ( r ) T ( r ) - ' w ) .  

2.1. The logarithmic transformation 

In two dimensions, it is convenient to associate with each point r a complex number 
5. Any analytic function w =f(l) then corresponds to a conformal transformation, 
with b ( r )  = lf(5)I-l. Under such a transformation we have, from (2.5) 

wl, 5,; r(m) = imiw)~). (2.8) 

In general, the correlation functions on either side of this equation will be evaluated 
in different geometries. A particularly useful transformation is w = In 5, which maps 
the whole 5 plane into the strip IIm wI s IT, with periodic boundary conditions. The 
consequences of this for the static correlation function have already been studied by 
Cardy (1984). Putting w = y +io, and using the result that the static correlation function 
in the whole plane is simply 15, - the correlation function in the strip is 

cs(y,, el ;  Y,, e,) = [2 cosh(y, - y 2 )  - 2   COS(^, - 0,)1-~. (2.9) 

For y ,  - y ,  + m this behaves like exp[ - x ( y ,  - y 2 ) ] ,  implying that the correlation length 
in the strip is 6 = x-'. For a strip of width L, this generalises to 6( L )  = L/27rx. This 
result has been numerically verified for several isotropic two-dimensional models 
(Derrida and de Seze 1982, Nightingale and Blote 1983). The main point is that the 
correlations in the strip are non-critical, as they must be for a quasi-one-dimensional 
system. 

Now we can use (2.8) to express the dynamic correlation function in the plane 
(with a uniform r=To) in terms of the correlation function in the strip (with a 
non-uniform r): 

(2.10) C(rl, e l ;  r2, 6,; rot) = (rlr2)-"Cs(ln r , ,  el;  In r2, 62;  e-zYTot) 

where a superscript s refers to the strip geometry. Similarly, the Fourier transformed 
response functions in the two geometries are related by 

6 ( r l ,  e,;  r2, 0,; wr;I) = (rlr2)-XGS(ln rl,  e,; In r2, e,; w eZYr;'). (2.11) 

The critical dynamics in the plane is therefore related to the dynamics of a 
non-critical one-dimensional system with a non-uniform rate T ( y )  = e - T 0 .  Without 
loss of generality we may choose r2 = 1, 8, = 0. Since we are interested in the limit 
rl -* 03, it is convenient to average over ; that is, define 

Both GaV and 6 have the same scaling limit and we shall henceforth ignore the 
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distinction. The advantage is that the 8 dependence has been averaged over on the 
right-hand side of (2.1 l ) ,  and since In r >> 1, we are studying the truly one-dimensional 
properties of the strip. 

3. Results for specific models 

In this section we solve the problem of calculating the dynamic response function for 
a non-uniform one-dimensional system. Since we are interested only in the functional 
dependence of this quantity, and in distances much larger than the correlation length, 
it is permissible to apply mean-field or van Hove theory (Ma 1976). For a translationally 
invariant system, with no mode-mode coupling terms, this theory implies that the 
Fourier transform Gk of the response function satisfies 

aG,/af = - r k ( k 2 +  t-2)Gk + r k S (  f )  (3 .1)  

where r k  is the relaxation rate for a mode with wavevector k, and 6 is the static 
correlation length. The cases of non-conserved order parameter (model A) and con- 
served order parameter (model B) correspond respectively to r k +  constant, and to 
rk a: k2,  as k EO. For a non-uniform rate T ( y )  this equation must be rewritten in 
coordinate space. We then find for model A that 

dG"Y, Y2) ld t  = -r(Y)[(--a2/aY'+ t -Ws- S(Y - Y 2 ) 6 ( f ) l  (3.2) 

while for model B 

dG"Y, Y 2 ) l a f  = (a/eY)r(Y)(a/aY)[(-aZ/aY2+ K 2 ) G S -  S(Y - Y z ) S ( f ) l  (3.3) 

where y is the coordinate measured along the strip. Note that if we Fourier transform 
(3.2) and (3.3) with respect to time and take the zero frequency limit, we obtain the 
correct mean-field equation satisfied by the static correlation function 

( - a 2 / a Y 2 + 5 - ' ) c S ( Y ,  Y2) = S(Y -Y2) (3.4) 

which, of course implies that C s ( y ,  y 2 ) E  exp(-ly - y 2 1 / 6 ) .  Comparing with the exact 
result (2.9) we see that we should choose 6 = x - l ,  and that this approximation is valid 
only when ly -y21 >> 5. The form of (3.3) is such that J?m G dy = 0, corresponding to 
a conserved order parameter. In the limit 5 + 0 it describes the diffusion of a particle 
in a non-uniform medium. 

From these equations and (2.9) we may obtain in each case a differential equation 
obeyed by the response function in the plane, by choosing T ( y )  = To e-'Y. 

Model  A 

In this case the differential equation is 

( a / a t ) r " G ( r ,  t )  = -Tor- ' [ - (r  d / d r ) 2 + x 2 ] r " G +  ToS( r -  1)6( t )  (3.5) 

where we have put y 2  = 0. The peculiar form of the source term in (3.5) results from 
approximating G by Gav. Since we are interested in distances r >> 1, the precise form 
of the source term is irrelevant, and we shall henceforth ignore it. It is convenient to 
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Laplace transform (3.5), defining 

d( r, s)  = Ioa e-”G( r, t)  d t  = G( r, is). (3.6) 

then satisfies an ordinary differential equation: 

[-(r d /dr )2+x2]rxe  = -(sr’+”/To)6. (3.7) 

From this it can be seen that r x c  depends on r through the combination srz only. 
Substituting r x 6  = g and s1/2r2/2r;1/2 = v the equation reduces to 

Y 2  d2g/dv2+v d g / d v - ( 4 / ~ ’ ) ( ~ ~ + ~ ~ ) g = O  (3.8) 

which is the modified Bessel equation, with solutions g = Z2x/r(2u/~) ,  K2,,,(2u/z). 
The condition that 6 should be bounded as r +  CO picks o1it the second solution. As 
a result we find that 

6 ( r ,  s) = A(s)r-XK2x,z(s”2rz’2) (3.9) 

where we have absorbed the irrelevant constant (2/2) in the argument into a redefinition 
of r. The function A(s) is fixed by the requirement that, as s+O,  6 should become 
the static correlation function r-2x. This implies that, up to a constant, A(s)=sX”.  
The response function in real time may be recovered by inverse Laplace transform, 
with the remarkably simple result (Erdelyi et a1 1954) 

G( r, t )  = t -2X/Z-1 exp( -rZ/ t ) .  (3.10) 

It is indeed straightforward to show that this satisfies the homogeneous form of (3.5), 
which can in fact be solved by quadratures. 

Both forms (3.9) and (3.10) are the unique solution for the critical dynamic response 
function up to a non-universal rescaling of r and t. They are, of course, consistent 
with dynamic scaling. The result (3.10) is very appealing, being almost the simplest 
modification of the van Hove theory result t-’ exp( -r2/t)  of which one could conceive. 
The non-analyticity of the asymptotic form (3.10) at r = 0 is not inconsistent with the 
presumed regularity of G( r, t )  at r = 0 for finite t. In our calculation we had to assume 
that r is large. 

The dynamic structure factor, as measured in a scattering experiment, is related to 
the Hankel transform of e( r, s): 

drrJo(kr)d(r ,  -iw). (3.11) 

We have been able to evaluate this analytically only in the case z = 2 (which is a good 
approximation for the Ising model). We find (Erdelyi et a1 1954) 

(3.12) 

(3.13) 

~ ( k ,  w )  = ( 2 / w )  Im(-iw + k2)-’+1l2 

= ( 2 / w ) ( 0 2 +  k4)-1/2+1/4 sin[(l- q / 2 )  tan-’(w/k2)]. 

Model B 

The differential equation satisfied by the response function is now of fourth order 

rx aG/at =To(r  d/dr)r-’(r d/dr)[-(r d/dr)’+x2]r“G. (3.14) 
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For simplicity, we assume from the beginning the scaling form G(r, t )  = 
( I ' o t ) - 2 x / z - 1 $ ( u ) ,  where U = r z / r o t .  After some algebra, we find that $ satisfies 

(6  +2x/z)[S(6 + x /z  - 1)(S + x / z ) $  - ( u / z 4 ) $ ]  = 0 (3.15) 

where S = U d/du. This is a generalised hypergeometric equation (Erdelyi et a1 1953). 
These are four independent solutions which behave like u p  as u+O,  where Q =0,  
-2x/z, 1 - x/z,  -x / z  respectively. Since G must be finite at U = 0 ( r  = 0), only the 
solutions with Q = 0, 1 - x / z  are allowed. This means that in fact $ satisfies the 
third-order equation 

(3.16) S(S + x / z  - 1)(6 +x /z )$ - (u /z4 )$  = 0. 

The solution which is regular at U = O  is 

oF2(x/z, 1 + x / z ;  u/z4). (3.17) 

The other solution which is finite at U = 0 may be found by letting $ = U'-"'$; $ then 
satisfies a similar third-order hypergeometric equation, and we choose the solution 
regular at U = 0. The second solution of (3.16), finite at U = 0, is then 

,F2(2, 2 - x / z ;  u/z4). (3.18) 

To determine the correct linear combination of these two solutions it is necessary to 
study the behaviour as U + 00. From the differential equation we see that the asymptotic 
behaviour is of the form 

+ - u p  exp(Ap') (3.19) 

and, on substituting this into equation (3.16) we find p = f  and (A/3)3 = z - ~ ,  so that a 
typical solution will blow up like exp[3(u/~") ' /~].  We must therefore choose the correct 
linear combination of (3.17) and (3.18) so that this divergence is cancelled. We require 
the asymptotic behaviour of the function. Since this does not appear in the standard 
literature we sketch the details of this calculation. Define 

(3.20) 

u l - x / z  

f ( x )  = OFZ(Plr P2, (X/3l3). 

The Laplace transform is (Erdelyi et a1 1954) 

JO 

(3.21) 

This series converges for IpI > 1,  and the singularities on the circle of convergence are 
at = 1,  e2"V3, e-2v i /3  . The nature of these singularities follows from the ratio test: 
denoting the series by X, b , , ~ - ~ " ,  we find that as n + 00 

-- bn+, 1+1-Pl -P2+O(n-2)  
b n  n (3.22) 

which means that the singularity is of the form ( 1  - P - ~ ) "  with Q = p ,  + p2 - 2. Taking 
the inverse Laplace transform, 

(3.23) 
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It is now straightforward to find the correct linear combination of (3.17) and (3.18). 
The final result for the scaling function is 

+(U) = ~ ( ~ - x / z ) , F , ( x / ~ ,  I + X / Z ;  4 z 4 )  

- ( u / ~ 4 ) 1 - x / z r ( ~ / z ) r (  1 + x / z ) , F ~ ( ~ ,  2 - X / Z ;  u / z ~ ) .  (3.24) 

This result, although exact, is not particularly transparent. The main feature of $(U) 
is its asymptotic behaviour as U +CO, 

4 ( u )  - constant x u - 2 x / 3 z  e-””3 c o s ( ~ 5 u ~ ’ ~ )  (3.25) 

where some numerical constants have, been absorbed into the (non-universal) normali- 
sation of U = r2/rot. The oscillations in this function are characteristic of a system 
with a conserved order parameter. On setting z = 4, x = 0, we obtain the prediction of 
van Hove theory. In principle, the formula (3.25) can be Fourier transformed to obtain 
the dynamic structure factor, but we have no analytic results. 

4. Summary and discussion 

We have argued that the logarithmic conformal transformation maps the critical 
dynamics of a two-dimensional system onto those of a quasi-one-dimensional strip 
with a non-uniform rate. Solving the latter problem, we have derived the first exact 
results for the dynamic scaling function at criticality in two dimensions. Our main 
results are (3.10) for the response function with a non-conserved order parameter, and 
(3.25) in the conserved case. In principle the analysis can be extended to more 
complicated types of dynamics. Unfortunately it does not predict the value of the 
dynamic exponent z. 

The result (3.10) has an application to directed lattice animals in three dimensions. 
It has been argued (Cardy 1982, Breuer and Janssen 1982) that this problem is equivalent 
to the model A dynamics of the Yang-Lee edge singularity in two dimensions. In this 
equivalence, the response function G( r i l ,  ri)  gives the density of monomers in a large 
directed animal rooted at the origin. 

Finally, we suggest that the logarithmic conformal transformation may give a useful 
qualitative picture of a two-dimensional system at its critical point. Recall that the 
correlation length in the strip is equal to x. In a quasi-one-dimensional system such 
a finite correlation length results from a finite density x-’ of domain walls crossing 
the whole strip (figure l ( a ) ) .  Under conformal transformation, this array of domain 
walls maps into those shown in figure l ( 6 ) .  This is just the scale-invariant picture of 
‘droplets within droplets’ espoused by Fisher ( 1967) and considered quantitatively by 
Bruce and Wallace (1983) in 1 + E dimensions. Note that the only domain walls which 
contribute to the correlation function between points r ,  and r2 are those for which (in 
some average sense) these points lie on opposite sides. The remaining droplets, required 
by translational invariance in the two-dimensional picture, play no role. It would be 
interesting to develop these qualitative ideas further. In particular, the dynamics of 
model A in one dimension can be understood in terms of a simple diffusive behaviour 
of the domain walls. The results in this paper, then, should give information on the 
diffusion of domain walls in two dimensions, where curvature also plays an important 
role. 
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Figure 1. ( a )  Typical configuration of domain walls in the strip. The picture is supposed 
to be scale invariant on length scales smaller than the strip width. On larger scales there 
is a finite density x of walls which cross the strip. ( 6 )  The conformally transformed picture. 
The regular array of domain walls in the strip corresponds to a scale-invariant distribution 
in the plane. However, only domain walls passing between r ,  and r, contribute to the 
correlation function of spins at these points. 
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